Chevrolet Trax Owners & Service Manuals

Chevrolet Trax: DTC P0112, P0113, OR P0114

Diagnostic Instructions

  • Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure.
  • Review Strategy Based Diagnosis for an overview of the diagnostic approach.
  • Diagnostic Procedure Instructions provides an overview of each diagnostic category.

DTC Descriptors

DTC P0112

Intake Air Temperature (IAT) Sensor Circuit Low Voltage

DTC P0113

Intake Air Temperature (IAT) Sensor Circuit High Voltage

DTC P0114

Intake Air Temperature (IAT) Sensor Circuit Intermittent

Diagnostic Fault Information

IAT Sensor 1

IAT Sensor 1

IAT Sensor 1

Typical Scan Tool Data

IAT Sensor 1

IAT Sensor 1

Circuit/System Description

The sensors listed below are integrated within the multifunction intake air sensor:

  • IAT sensor 1
  • IAT sensor 2
  • Humidity sensor
  • MAF sensor
  • BARO pressure sensor

The intake air temperature (IAT) sensor 1 is a variable resistor that changes the voltage on the engine control module (ECM) supplied 5 V signal circuit. The signal varies with inlet air temperature in the sensor bore and is displayed by the scan tool as ºC (ºF).

The IAT sensor 1 produces an analog signal on pin-8 of the sensor. The IAT sensor 2 produces a frequency modulated signal on pin-1 of the sensor.

The sensors listed below share an ECM supplied 5 V reference circuit:

  • IAT sensor 2
  • Humidity sensor
  • BARO pressure sensor

The sensors listed below share an ECM supplied low reference circuit:

  • IAT sensor 1
  • IAT sensor 2
  • Humidity sensor
  • Barometric pressure (BARO) sensor

IAT Sensor 1 - Temperature, Resistance, Voltage Table

IAT Sensor 1 - Temperature, Resistance, Voltage Table

Conditions for Running the DTCs

P0112, P0113, and P0114

  • The ignition is ON, or the engine is running.
  • The DTCs run continuously when the above conditions are met.

Conditions for Setting the DTCs

P0112

The ECM detects that the IAT sensor signal is warmer than 149ºC (300ºF) for at least 5 s.

P0113

NOTE: The scan tool display range is between -40 and +150ºC (-40 and +302ºF).

The ECM detects that the IAT sensor signal is colder than -60ºC (-76ºF) for at least 5 s.

P0114

The ECM detects that the IAT sensor signal is intermittent or has abruptly changed for at least 5 s.

Action Taken When the DTCs Set

  • DTCs P0112, P0113, and P0114 are Type B DTCs.
  • The ECM commands the cooling fans ON.

Conditions for Clearing the DTCs

DTCs P0112, P0113, and P0114 are Type B DTCs.

Diagnostic Aids

With the ignition ON, when the engine is cold and not running, a properly functioning IAT sensor 1 will gradually increase the scan tool IAT Sensor 1 parameter. This is due to the heat that is generated by the multifunction intake air sensor internal heating elements.

Reference Information

Schematic Reference

Engine Controls Schematics (Encore) , Engine Controls Schematics (Trax)

Connector End View Reference

WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT CONNECTOR END VIEWS - INDEX - ENCORE WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT CONNECTOR END VIEWS - INDEX - TRAX

Electrical Information Reference

  • Circuit Testing
  • Connector Repairs
  • Testing for Intermittent Conditions and Poor Connections
  • Wiring Repairs

DTC Type Reference

Powertrain Diagnostic Trouble Code (DTC) Type Definitions (LUV) , Powertrain Diagnostic Trouble Code (DTC) Type Definitions (2H0)

DTC Type Reference

Powertrain Diagnostic Trouble Code (DTC) Type Definitions (LUV) , Powertrain Diagnostic Trouble Code (DTC) Type Definitions (2H0)

Scan Tool Reference

Control Module References for scan tool information

Circuit/System Verification

  1. Ignition ON.
  2. Verify that DTC DTC P0641, P0651, P0697, or P06A3 is not set.
  • If any of the DTCs are set

Refer to DTC P0641, P0651, P0697, or P06A3 (ECM) for further diagnosis.

  • If none of the DTCs are set

NOTE:

To minimize the effects of residual engine heat and sensor internal heating elements, perform Steps 3 and 4 of this verification procedure only if the ignition has been OFF for 8 hours or more.

  1. Ignition ON.
  2. Verify the following scan tool parameters are within 25ºC (45ºF) of each other.
  • Start-Up IAT Sensor 1
  • IAT Sensor 2
  • IAT Sensor 3; where equipped
  • If not within 25ºC (45ºF)

Refer to Circuit/System Testing.

  • If within 25ºC (45ºF)
  1. Engine idling, verify the following scan tool parameters are between: -38 and +149ºC (-36 and +300ºF).
  • IAT Sensor 1
  • IAT Sensor 2
  • IAT Sensor 3; where equipped
  • If not between: -38 and +149ºC (-36 and +300ºF)

Refer to Circuit System Testing.

  • If between: -38 and +149ºC (-36 and +300ºF)
  1. Operate the vehicle within the conditions for running the DTC. You may also operate the vehicle within the conditions that you observed from the freeze frame/failure records data.
  2. Verify the DTC does not set.
  • If the DTC does set

Refer to Circuit/System Testing.

  • If the DTC does not set
  1. All OK

Circuit/System Testing

NOTE:

You must perform the Circuit/System Verification before proceeding with Circuit/System Testing.

  1. Ignition OFF, and all vehicle systems OFF, it may take up to 2 min. for all vehicle systems to power down. Disconnect the harness connector at the B75C Multifunction Intake Air sensor.
  2. Test for less than 2 ohms between the low reference circuit terminal 7 and ground.
  • If 2 ohms or greater
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for less than 2 ohms in the low reference circuit end to end.
  • If 2 ohms or greater, repair the open or high resistance in the circuit.
  • If less than 2 ohms replace the K20 Engine Control Module.
  • If less than 2 ohms
  1. Ignition ON, test for 4.8-5.2 V between signal circuit terminal 8 and ground.
  • If less than 4.8 V
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for infinite resistance between the signal circuit and ground.
  • If less than infinite resistance, repair the short to ground on the circuit.
  • If infinite resistance
  1. Test for less than 2 ohms in the signal circuit end to end.
  • If 2 ohms or greater, repair the open/high resistance in the circuit.
  • If less than 2 ohms, replace the K20 Engine Control Module.
  • If greater than 5.2 V

NOTE: If the signal circuit is shorted to a voltage the engine control module or the sensor may be damaged.

  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Ignition ON, test for less than 1 V between the signal circuit and ground.
  • If 1 V or greater, repair the short to voltage on the circuit.
  • If less than 1 V, replace the K20 Engine Control Module.
  • If between 4.8-5.2 V
  1. Ignition ON, verify the scan tool IAT Sensor 1 parameter is colder than -39ºC (-38ºF).
  • If warmer than -39ºC (-38ºF).
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for infinite resistance between the signal circuit terminal 8 and ground
  • If less than infinite resistance, repair the short to ground on the circuit.
  • If infinite resistance
  1. Test for less than 2 ohms in the signal circuit end to end.
  • If 2 ohms or greater, repair the open/high resistance in the circuit.
  • If less than 2 ohms, replace the K20 Engine Control Module.
  • If colder than -39ºC (-38ºF).
  1. Ignition OFF, install a 3 A fused jumper wire between the signal circuit terminal 8 and the low reference circuit terminal 7.
  2. Verify the scan tool IAT Sensor 1 parameter is warmer than 148ºC (298ºF).
  • If colder than 148ºC (298ºF).
  1. Ignition OFF, remove the jumper wire, disconnect the harness connector at the K20 Engine Control Module, ignition ON.
  2. Test for less than 1 V between the signal circuit and ground.
  • If 1 V or greater, repair the short to voltage on the circuit.
  • If less than 1 V
  1. Ignition OFF.
  2. Test for less than 2 ohms in the signal circuit end to end.
  • If 2 ohms or greater, repair the open/high resistance in the circuit.
  • If less than 2 ohms, replace the K20 Engine Control Module.
  • If warmer than 148ºC (298ºF).
  1. Test or replace the B75C Multifunction Intake Air sensor.

Component Testing

Multifunction Intake Air Sensor

  1. Ignition OFF, disconnect the harness connector at the B75C Multifunction Intake Air sensor.

NOTE: A thermometer can be used to test the sensor off the vehicle.

  1. Test the IAT sensor 1 by varying the sensor temperature while monitoring the sensor resistance. Compare the readings with the Temperature Versus Resistance - Intake Air Temperature Sensor (Bosch Sensor) , Temperature Versus Resistance - Intake Air Temperature Sensor (Delco Sensor) table for Bosch Sensors. The resistance values should be in range of the table values.
  • If not within the specified range.

Replace the B75C Multifunction Intake Air sensor.

  • If within the specified range.
  1. All OK

Repair Instructions

Perform the Diagnostic Repair Verification after completing the repair.

  • Mass Airflow Sensor Replacement for multifunction intake air sensor replacement
  • Control Module References for Engine Control Module replacement, programming, and setup.

    READ NEXT:

     DTC P0116

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

     DTC P0117, P0118, OR P0119

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

     DTC P0121-P0123, P0222, P0223, OR P2135

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

    SEE MORE:

     Checking Injector Resistance

    If a short in an injector coil winding is constant, an ohmmeter will accurately identify the lower resistance. The same is true with an open winding. Unfortunately, an intermittent short is an exception. A faulty injector with an intermittent short will show "good" if the ohmmeter cannot force the

     DTC C027C: Front brake discs high temperature

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diagnostic Procedure Instructions provides an overview of each diagnostic category. DTC Descriptor DT

    © 2019-2024 Copyright www.chevtrax.com