Chevrolet Trax: DTC P0096 OR P0111
Diagnostic Instructions
- Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
- Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
- Diagnostic Procedure Instructions provides an overview of each
diagnostic category.
DTC Descriptors
DTC P0096
Intake Air Temperature (IAT) Sensor 2 Performance
DTC P0111
Intake Air Temperature (IAT) Sensor 1 Performance
Diagnostic Fault Information
IAT Sensor 1
IAT Sensor 2
Typical Scan Tool Data
IAT Sensor 1
IAT Sensor 2
Circuit/System Description
The sensors listed below are integrated within the multifunction intake air
sensor:
- IAT sensor 1
- IAT sensor 2
- Humidity sensor
- MAF sensor
- BARO pressure sensor
The intake air temperature (IAT) sensor 1 is a variable resistor that changes
the voltage on the engine control
module (ECM) supplied 5 V signal circuit. The signal varies with inlet air
temperature in the sensor bore and is
displayed by the scan tool as ºC (ºF). The IAT sensor 2 and the humidity sensor
share the same circuit. The IAT
sensor 2 signal is displayed by the scan tool as Hz (Hertz) and ºC (ºF).
The IAT sensor 1 produces an analog signal on pin-8 of the sensor. The IAT
sensor 2 produces a frequency
modulated signal on pin-1 of the sensor.
The sensors listed below share an ECM supplied 5 V reference circuit:
- IAT sensor 2
- Humidity sensor
- Barometric pressure (BARO) sensor
The sensors listed below share an ECM supplied low reference circuit:
- IAT sensor 1
- IAT sensor 2
- Humidity sensor
- Barometric pressure (BARO) sensor
IAT Sensor 1 - Temperature, Resistance, Voltage Table
IAT Sensor 2 - Temperature, Frequency Table
Conditions for Running the DTCs
P0096 and P0111
- DTCs P0097, P0098, P0111, P0112, P0113, P0117, P0118, P00EA, P00EB, or
P1682 are not set.
- The ignition has been OFF at least 8 hours.
- Ignition voltage is at least 11 V.
- These DTCs run once per ignition cycle when the enabling conditions are
met.
Conditions for Setting the DTCs
P0096
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 2 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 2 start-up
temperature and the IAT
sensor 3 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 3 start-up temperature is less than or equal to 25ºC (45ºF).
- This DTC runs once per ignition cycle when the enabling conditions are
met.
NOTE: P0111 Can fail under any of the following 3 sets of
conditions.
P0111 - Condition 1
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 2 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 3 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 2 start-up
temperature and the IAT
sensor 3 start-up temperature is less than or equal to 25ºC (45ºF).
P0111 - Condition 2
- The ECM determines the IAT sensor 2 start-up temperature is between the
IAT sensor 1 and IAT sensor 3
start-up temperatures.
AND
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 3 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 2 and the
IAT sensor 1 start-up
temperatures is greater than absolute difference between IAT sensor 2 and
the IAT sensor 3 start-up
temperatures.
P0111 - Condition 3
- The ECM determines the IAT sensor 3 start-up temperature is between the
IAT sensor 1 and IAT sensor 2
start-up temperatures
AND
- The ECM determines the absolute difference between IAT sensor 1 start-up
temperature and the IAT
sensor 2 start-up temperature is greater than 25ºC (45ºF).
AND
- The ECM determines the absolute difference between IAT sensor 3 and the
IAT sensor 1 start-up
temperatures is greater than absolute difference between IAT sensor 3 and
the IAT sensor 2 start-up
temperatures.
DTC P0111 runs once an ignition cycle when the any one, of the above 3
enabling sets of conditions is met.
Action Taken When the DTCs Set
DTCs P0096 and P0111 are Type B DTCs.
Conditions for Clearing the DTCs
DTCs P0096 and P0111 are Type B DTCs.
Diagnostic Aids
- With the ignition ON, when the engine is OFF and is cold; properly
functioning IAT sensors 1 and 2 will
gradually increase the scan tool IAT Sensor 1 and 2 parameters. This is due
to the heat that is generated
by the multifunction intake air sensor internal heating elements.
- The Humidity sensor and the IAT sensor 2 signals are sent to the ECM on
the same circuit. If the IAT
Sensor 2 parameter displays the values: 10 Hz; -40ºC (-40ºF), and there are
also Humidity Sensor DTCs,
check for a circuit problem.
Reference Information
Schematic Reference
Engine Controls Schematics (Encore) , Engine Controls Schematics (Trax)
Connector End View Reference
WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT CONNECTOR END VIEWS -
INDEX - ENCORE WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT
CONNECTOR END VIEWS - INDEX - TRAX
Electrical Information Reference
- Circuit Testing
- Connector Repairs
- Testing for Intermittent Conditions and Poor Connections
- Wiring Repairs
DTC Type Reference
Powertrain Diagnostic Trouble Code (DTC) Type Definitions (LUV) ,
Powertrain Diagnostic Trouble
Code (DTC) Type Definitions (2H0)
Scan Tool Reference
Control Module References for scan tool information
Special Tools
EL-38522-A Variable Signal Generator
For equivalent regional tools, refer to Special Tools (Diagnostic Tools)
Circuit/System Verification
- Ignition ON.
- Verify that DTC DTC P0641, P0651, P0697, or P06A3 is not set.
- If any of the DTCs are set
Refer to DTC P0641, P0651, P0697, or P06A3 (ECM) for further diagnosis.
- If none of the DTCs are set
NOTE: To minimize the effects of residual engine heat and sensor
internal heating
elements, perform Steps 3 and 4 of this verification procedure only if the
ignition has been OFF for 8 hours or more.
- Ignition ON.
- Verify the following scan tool parameters are within 25ºC (45ºF) of each
other.
- Start-Up IAT Sensor 1
- IAT Sensor 2
- IAT Sensor 3; where equipped
- If not within 25ºC (45ºF)
Refer to Circuit/System Testing.
- Engine idling, verify the following scan tool parameters are between:
-38 and +149ºC (-36 and +300ºF).
- IAT Sensor 1
- IAT Sensor 2
- IAT Sensor 3; where equipped
- If not between: -38 and +149ºC (-36 and +300ºF)
Refer to Circuit System Testing.
- If between: -38 and +149ºC (-36 and +300ºF)
- Operate the vehicle within the conditions for running the DTC. You may
also operate the vehicle within
the conditions that you observed from the freeze frame/failure records data.
- Verify the DTC does not set.
Refer to Circuit/System Testing.
- All OK
Circuit/System Testing
NOTE: You must perform the Circuit/System Verification before
proceeding with
Circuit/System Testing.
- Check the integrity of the entire air induction system and verify that
none of the following conditions
exist:
- A loose or disconnected charge air cooler hose
or pipe; where equipped
- A blocked or obstructed charge air cooler, including: after-market grill
covers; where equipped
- Any snow or ice build-up at the charge air cooler in cold climates;
where equipped
- Any mud or dirt build-up at the charge air cooler; where equipped
- A restricted or collapsed air intake duct
- An intake manifold leak
- A MAP sensor seal that is leaking, missing, or damaged
- A misaligned or damaged air intake duct
- Any water intrusion in the induction system
- An Intake Manifold Resonator with a leaking seal, or a cracked or broken
housing
Repair or replace component as appropriate.
- Ignition OFF, and all vehicle systems OFF, it may take up to 2 min. for
all vehicle systems to power
down. Disconnect the harness connector at the B75C Multifunction Intake Air
sensor.
- Test for less than 2 ohms between the low reference circuit terminal 7
and ground.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for less than 2 ohms in the low reference circuit end to end.
- If 2 ohms or greater, repair the open or high resistance in the circuit.
- If less than 2 ohms replace the K20 Engine Control Module.
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If greater than 5.2 V
NOTE: If the 5 V reference circuit is shorted to a voltage
the engine control
module or the sensor may be damaged.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Ignition ON, test for less than 1 V between the 5 V reference
circuit and ground.
- If 1 V or greater, repair the short to voltage on the circuit.
- If less than 1 V, replace the K20 Engine Control Module.
If between 4.8-5.2 V
- Ignition ON, test for 4.8-5.2 V between the signal circuit terminal 8
and ground.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for infinite resistance between the signal circuit and ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If greater than 5.2 V
NOTE: If the signal circuit is shorted to a voltage the
engine control module
or the sensor may be damaged.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Ignition ON, test for less than 1 V between the signal circuit and
ground.
- If 1 V or greater, repair the short to voltage on the circuit.
- If less than 1 V, replace the K20 Engine Control Module.
If between 4.8-5.2 V
- Ignition ON, verify the scan tool IAT Sensor 1 parameter is colder than
-39ºC (-38ºF).
If warmer than -39ºC (-38ºF).
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for infinite resistance between the signal circuit terminal 8 and
ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If colder than -39ºC (-38ºF).
- Ignition OFF, install a 3 A fused jumper wire between the signal circuit
terminal 8 and the low reference
circuit terminal 7.
- Verify the scan tool IAT Sensor 3 parameter is warmer than 150ºC
(302ºF).
If colder than 150ºC (302ºF).
- Ignition OFF, remove the jumper wire, disconnect the harness connector
at the K20 Engine Control
Module, ignition ON.
- Test for less than 1 V between the signal circuit and ground.
- If 1 V or greater, repair the short to voltage on the circuit.
- If less than 1 V
- Ignition OFF.
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If warmer than 150ºC (302ºF).
- Ignition ON, test for 4.8-5.2 V between the signal terminal 1 and ground.
If less than 4.8 V
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for infinite resistance between the signal circuit and ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If greater than 5.2 V
NOTE: If the signal circuit is shorted to a voltage the engine
control module
or the sensor may be damaged.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Ignition ON, test for less than 1 V between the signal circuit and
ground.
- If 1 V or greater, repair the short to voltage on the circuit.
- If less than 1 V, replace the K20 Engine Control Module.
If between 4.8-5.2 V
- Determine if EL-38522-A Variable Signal Generator or equivalent is
available.
- EL-38522-A, Variable Signal Generator; or equivalent is not available
- Replace the K20 Engine Control Module.
- Operate the vehicle within the Conditions for Running the DTC. You may
also operate the vehicle
within the conditions that you observed from the freeze frame/failure
records data.
- Verify the DTC does not set.
Test or replace the B75C Multifunction Intake Air sensor.
- Circuits, ECM, and the sensors test OK, refer to step 18.
EL-38522-A, Variable Signal Generator; or equivalent is available
- Ignition OFF, connect the leads of the EL-38522-A Variable Signal
Generator as follows:
- Red lead to the signal circuit terminal 1 at the harness connector
- Black leads to ground
- Battery voltage supply lead to B+
- Set the EL-38522-A Variable Signal Generator to the following
specifications.
- Signal switch to 5 V
- Duty Cycle switch to 50 % (Normal)
- Frequency switch to 30 Hz
- Ignition ON, verify the scan tool IAT Sensor 2 parameter is between
28-32 Hz.
If not between 28-32 Hz
Replace the K20 Engine Control Module.
If between 28-32 Hz
- Ignition OFF and all vehicle systems OFF, disconnect the B111B
Turbocharger Boost/Intake Air
Temperature sensor. It may take up to 2 min for all vehicle systems to power
down.
- Test for less than 2 ohms between the low reference circuit terminal 1
and ground.
If 2 ohms or greater
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for less than 2 ohms in the low reference circuit end to end.
- If 2 ohms or greater, repair the open or high resistance in the circuit.
- If less than 2 ohms replace the K20 Engine Control Module.
If less than 2 ohms
- Ignition ON, test for 4.8-5.2 V between the signal circuit terminal 2
and ground.
If less than 4.8 V
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Test for infinite resistance between the signal circuit and ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance
- Test for less than 2 ohms in the signal circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the K20 Engine Control Module.
If greater than 5.2 V
NOTE: If the signal circuit is shorted to a voltage the engine
control module
or the sensor may be damaged.
- Ignition OFF, disconnect the harness connector at the K20 Engine Control
Module.
- Ignition ON, test for less than 1 V between the signal circuit and
ground.
- If 1 V or greater, repair the short to voltage on the circuit.
- If less than 1 V, replace the K20 Engine Control Module.
If between 4.8-5.2 V
- Test or replace the appropriate temperature sensor.
- All OK.
Component Testing
Multifunction Intake Air Sensor
- Ignition OFF, disconnect the harness connector at the B75C Multifunction
Intake Air sensor.
NOTE: A thermometer can be used to test the sensor off the vehicle.
- Test the IAT sensor 1 by varying the sensor temperature while monitoring
the sensor resistance. Compare
the readings with the Temperature Versus Resistance - Intake Air Temperature
Sensor (Bosch
Sensor) , Temperature Versus Resistance - Intake Air Temperature Sensor (Delco
Sensor) table for
Bosch Sensors. The resistance values should be in range of the table values.
- If not within the specified range.
Replace the B75C Multifunction Intake Air sensor.
- If within the specified range.
All OK
Multifunction Intake Air Sensor
- Test the IAT Sensor 2 by varying the sensor temperature while monitoring
the air temperature with a
thermometer. Compare the readings with the scan tool IAT Sensor 2 parameter.
The values should be
within 5%.
If not within 5%
Replace the B75C Multifunction Intake Air sensor.
If within 5%
- All OK.
Turbocharger Boost/Intake Air Temperature sensor
- Ignition OFF, disconnect the harness connector at the B111B Turbocharger
Boost/Intake Air Temperature
sensor.
NOTE: A thermometer can be used to test the sensor off the
vehicle.
- Test the IAT sensor 3 by varying the sensor temperature while monitoring
the sensor resistance. Compare
the readings with the Temperature Versus Resistance - Intake Air Temperature
Sensor (Bosch
Sensor) , Temperature Versus Resistance - Intake Air Temperature Sensor (Delco
Sensor) table for
the appropriate sensor. The resistance values should be in range of the
table values.
If not within the specified range.
Replace the B111B Turbocharger Boost/Intake Air Temperature sensor.
If within the specified range.
- All OK
Repair Instructions
Perform the Diagnostic Repair Verification after completing the repair.
- Intake Air Pressure and Temperature Sensor Replacement for turbocharger
boost/intake air
temperature sensor replacement
- Mass Airflow Sensor Replacement for multifunction intake air sensor
replacement
- Control Module References for Engine Control Module replacement,
programming, and setup.
READ NEXT:
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
SEE MORE:
ANTIFREEZE/COOLANT
The main function of the Engine Cooling System is to carry heat away from the
engine and maintain the desired
operating temperature. This is accomplished by circulating antifreeze/coolant
through the engine, where heat is
generated, and carrying it to the radiator to be cooled.
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diagnostic Procedure Instructions provides an overview of each
diagnostic category.
DTC Descriptors
D