Chevrolet Trax: DTC U0074: Control module communication bus B OFF
Diagnostic Instructions
- Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
- Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
- Diagnostic Procedure Instructions provides an overview of each
diagnostic category.
DTC Descriptor
DTC U0074
Control Module Communication Bus B Off
For symptom byte information, refer to Symptom Byte List .
Diagnostic Fault Information
Circuit/System Description
The devices connected to the chassis high speed GMLAN serial data circuits
monitor for serial data
communications during normal vehicle operation. Operating information and
commands are exchanged among
the devices when the ignition switch is in any position other than OFF. The
chassis high speed GMLAN serial
data bus uses terminating resistors that are in parallel with the chassis high
speed GMLAN (+) and (-) circuits.
Conditions for Running the DTC
The system voltage is between 9-16 V.
Conditions for Setting the DTC
A supervised periodic message that includes the transmitter device
availability has not been received.
Action Taken When the DTC Sets
Specific subsystems will not function.
Conditions for Clearing the DTC
- A current DTC clears when the malfunction is no longer present.
- A history DTC clears when the device ignition cycle counter reaches the
reset threshold of 50, without a
repeat of the malfunction.
Diagnostic Aids
- Use the Data Link References to identify the chassis high speed GMLAN
devices.
- Sometimes, while diagnosing a specific customer concern or after a
repair, you may notice a history Ucode
present. However, there is no associated "current" or "active" status.
Loss-of-communication Ucodes
such as these can set for a variety of reasons. Many times, they are
transparent to the vehicle
operator and technician, and/or have no associated symptoms. Eventually,
they will erase themselves
automatically after a number of fault-free ignition cycles. This condition
would most likely be attributed
to one of these scenarios:
- A device on the data communication circuit was disconnected while the
communication circuit is
awake.
- Power to one or more devices was interrupted during diagnosis.
- A low battery condition was present, so some devices stop communicating
when battery voltage
drops below a certain threshold.
- Battery power was restored to the vehicle and devices on the
communication circuit did not all reinitialize
at the same time.
- If a loss-of-communication U code appears in history for no apparent
reason, it is most likely associated with one of the scenarios above. These
are all temporary conditions and should never be
interpreted as an intermittent fault, causing you to replace a part.
- Do not replace a device reporting a U code. The U code identifies which
device needs to be diagnosed for
a communication issue.
- Communication may be available between some devices and the scan tool
with the chassis high speed
GMLAN serial data system inoperative. This condition is due to those devices
using multiple serial data
communication systems.
- An open in the DLC ground circuit terminal 5 will allow the scan tool to
operate but not communicate
with the vehicle.
- Technicians may find various Local Area Network (LAN) communication
Diagnostic Trouble Codes
(DTC).
- Some devices may not have internal protection for specific voltage
outputs and may open a battery
positive voltage or ignition voltage source fuse. If a voltage input fuse is
open and no short is found in
that circuit, ensure that no device output voltage circuit is shorted to
ground before replacing the device.
Reference Information
Schematic Reference
- Data Communication Schematics (Encore), Data Communication Schematics (Trax)
- Control Module References
Connector End View Reference
WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT CONNECTOR END VIEWS -
INDEX - ENCORE WIRING SYSTEMS AND POWER MANAGEMENT - COMPONENT
CONNECTOR END VIEWS - INDEX - TRAX
Description and Operation
Data Link Communications Description and Operation
Electrical Information Reference
- Circuit Testing
- Connector Repairs
- Testing for Intermittent Conditions and Poor Connections
- Wiring Repairs
Scan Tool Reference
Control Module References for scan tool information
Circuit/System Verification
- Ignition ON.
- Verify two or more devices are not communicating on the chassis high
speed GMLAN serial data circuit.
Refer to Data Link References to determine how many devices should be
communicating on the bus.
If only one device is not communicating
Refer to Circuit/System Testing - Testing the Device Circuits.
If two or more devices are not communicating
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. Disconnect the scan tool from the X84 Data Link Connector. The
following tests will be
done at the X84 Data Link Connector. It may take up to 2 minutes for all
vehicle systems to power down.
- Test for less than 10 ohms between the ground circuit terminal 5 and
ground.
- Ignition OFF.
- Test for less than 2 ohms in the ground circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, repair the open/high resistance in the ground
connection.
If less than 10 ohms
- Ignition ON.
- Test for less than 4.5 V between the serial data circuits listed below
and ground:
- Chassis high speed GMLAN serial data terminal 12
- Chassis high speed GMLAN serial data terminal 13
If 4.5 V or greater
Refer to Circuit/System Testing - Testing the Serial Data Circuits for a
Short to Voltage.
If less than 4.5 V
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Test for greater than 100 ohms between the serial data circuits listed
below and ground:
- Chassis high speed GMLAN serial data terminal 12
- Chassis high speed GMLAN serial data terminal 13
If 100 ohms or less
Refer to Circuit/System Testing - Testing the Serial Data Circuits for a
Short to Ground.
If greater than 100 ohms
- Test for 50-70 ohms between the serial data circuit terminals 12 and 13:
If less than 35 ohms
Refer to Circuit/System Testing - Testing the Serial Data Circuits for a
Short between the Circuits.
If between 35-50 ohms
There may be a third terminating resistor between the serial data circuits.
This can happen if the
incorrect device is installed. Some devices are available with and without the
terminating resistors
installed to reduce the need of terminating resistors in the wiring harness.
Refer to Circuit/System
Testing - Testing the Serial Data Circuits for a Short between the Circuits.
If greater than 70 ohms but less than infinite
Refer to Circuit/System Testing - Testing the Serial Data Circuits for an
Open/High Resistance.
If infinite resistance
Repair the open/high resistance in the circuit between the X84 Data Link
Connector and the first
splice/device in the serial data circuit.
If between 50-70 ohms
- Refer to Circuit/System Testing - Testing the Device Circuits.
Circuit/System Testing
NOTE: Each device may need to be disconnected to isolate a circuit
fault.
Use the schematic to identify the following:
- Chassis high speed GMLAN devices the vehicle is equipped with
- Chassis high speed GMLAN serial data circuit terminating resistors
- Device locations on the chassis high speed GMLAN serial data circuits
- Each device's ground, B+, ignition, and chassis high speed GMLAN serial
data circuit terminals
Some devices with an internal terminating resistor have a loop in the harness
that connects the internal terminating resistor to the serial data circuit. When
wired this way, test these loop circuits for the appropriate failure mode short
to
voltage, short to ground, or open/high resistance prior to replacing the device
for each of the following tests.
Testing the Serial Data Circuits for a Short to Voltage
- Ignition OFF, disconnect the harness connectors with the chassis high
speed GMLAN serial data circuits
at an easily accessible device, ignition ON.
- Test for greater than 4.5 V between each serial data circuit at the
device connector that was just
disconnected and ground.
If each serial data circuit is 4.5 V or less
- Ignition OFF.
- Test for less than 10 ohms between each of the device's ground circuit
terminals and ground.
- If 10 ohms or greater, repair the open/high resistance in the circuit.
- If less than 10 ohms, replace the device that was disconnected.
If any serial data circuit is greater than 4.5 V
- Ignition OFF, disconnect the harness connectors with the chassis high
speed GMLAN serial data circuits
at another device, in the direction of the circuit shorted to voltage,
ignition ON.
- Test for greater than 4.5 V between each serial data circuit at the
device connector that was just
disconnected and ground.
If each serial data circuit is 4.5 V or less
- Ignition OFF.
- Test for less than 10 ohms between each of the device's ground circuit
terminals and ground.
- If 10 ohms or greater, repair the open/high resistance in the circuit.
- If less than 10 ohms, replace the device that was disconnected.
If any serial data circuit is greater than 4.5 V
- Repeat step 3 until one of the following conditions are isolated:
- A short to voltage on the serial data circuit between two devices or
splice packs, if equipped.
- A short to voltage on the serial data circuit between a device and a
terminating resistor.
Testing the Serial Data Circuits for a Short to Ground
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at an easily
accessible device.
- Test for greater than 100 ohms between each serial data circuit at the
device connector that was just
disconnected and ground.
If each serial data circuit is 100 ohms or greater
Replace the device that was disconnected.
If any serial data circuit is less than 100 ohms
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at another
device, in the direction of the circuit shorted to ground.
- Test for greater than 100 ohms between each serial data circuit at the
device connector that was just
disconnected and ground.
If both serial data circuits are 100 ohms or greater
Replace the device that was disconnected.
If any serial data circuit is less than 100 ohms
- Repeat step 4 until one of the following conditions are isolated:
- A short to ground on the serial data circuit between two devices or
splice packs, if equipped.
- A short to ground on the serial data circuit between a device and a
terminating resistor.
- A short to ground on the serial data circuit between the X84 Data Link
Connector and the first
device or splice pack.
Testing the Serial Data Circuits for a Short between the Circuits
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at an easily
accessible device that is not communicating.
- Test for greater than 110 ohms between each pair of serial data circuits
at the device connector that was
just disconnected.
If each pair of serial data circuits is 110 ohms or greater
Replace the device that was disconnected.
If any pair of serial data circuits is less than 110 ohms
- Connect the harness connectors at the device that was disconnected.
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at another
device, in the direction of the circuit shorted together.
- Test for greater than 110 ohms between each pair of serial data circuits
at the device connector that was
just disconnected.
- If each pair of serial data circuits is 110 ohms or greater
Replace the device that was disconnected.
- If any pair of serial data circuits is less than 110 ohms
- Repeat step 4 until one of the following conditions are isolated:
- Serial data circuits shorted together between two devices or splice
packs, if equipped.
- Serial data circuits shorted together between a device and a terminating
resistor.
- Serial data circuits shorted together between the X84 Data Link
Connector and the first device or
splice pack.
- A shorted terminating resistor.
Testing the Serial Data Circuits for an Open/High Resistance
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at an easily
accessible device that is not communicating.
- Test for less than 130 ohms between each pair of serial data circuits at
the device connector that was just
disconnected.
If each pair of serial data circuits is 130 ohms or less
Replace the device that was disconnected.
If any pair of serial data circuits is greater than 130 ohms
- Connect the harness connectors at the device that was disconnected.
- Disconnect the harness connectors with the chassis high speed GMLAN
serial data circuits at another
device, in the direction of the circuit with the open/high resistance.
- Test for less than 130 ohms between each pair of serial data circuits at
the device connector that was just
disconnected.
If each pair of serial data circuits is 130 ohms or less
Replace the device that was disconnected.
If any pair of serial data circuits is greater than 130 ohms
- Repeat step 4 until one of the following conditions are isolated:
- An open/high resistance on the serial data circuit between two devices
or splice packs, if equipped.
- An open/high resistance on the serial data circuit between a device and
a terminating resistor.
- An open/high resistance terminating resistor.
Testing the Device Circuits
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Disconnect the harness connectors at an easily accessible device that is
not communicating.
- Test for less than 10 ohms between each ground circuit terminal and
ground.
If 10 ohms or greater
- Ignition OFF.
- Test for less than 2 ohms in the ground circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, repair the open/high resistance in the ground
connection.
If less than 10 ohms
- If equipped, verify a test lamp illuminates between each B+ circuit
terminal and ground.
- If the test lamp does not illuminate and the circuit fuse is good
- Ignition OFF.
- Test for less than 2 ohms in the B+ circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, verify the fuse is not open and there is voltage at
the fuse.
If the test lamp does not illuminate and the circuit fuse is open
- Ignition OFF.
- Test for infinite resistance between the B+ circuit and ground.
If less than infinite resistance, repair the short to ground on the circuit.
If infinite resistance, replace the disconnected device.
If the test lamp illuminates
- Ignition ON.
- If equipped, verify a test lamp illuminates between each ignition
circuit terminal, which has a fuse in the
circuit, and ground.
If the test lamp does not illuminate and the circuit fuse is good
- Ignition OFF.
- Test for less than 2 ohms in the ignition circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, verify the fuse is OK and there is voltage at the
fuse.
If the test lamp does not illuminate and the circuit fuse is open
- Ignition OFF.
- Test for infinite resistance between the ignition circuit and ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance, replace the disconnected device.
If the test lamp illuminates
- If equipped, verify a test lamp illuminates between each ignition
circuit terminal, which is controlled by a
control module, and ground.
If the test lamp does not illuminate
- Ignition OFF, disconnect the harness connectors at the control module
that controls the ignition
circuit.
- Test for infinite resistance between the ignition circuit and ground.
- If less than infinite resistance, repair the short to ground on the
circuit.
- If infinite resistance
- Test for less than 2 ohms in the ignition circuit end to end.
- If 2 ohms or greater, repair the open/high resistance in the circuit.
- If less than 2 ohms, replace the control module that controls the
ignition circuit.
If the test lamp illuminates
- Ignition OFF, all access doors closed, all vehicle systems OFF, and all
keys at least 3 m (9.8 ft) away
from vehicle. It may take up to 2 minutes for all vehicle systems to power
down.
- Test for less than 130 ohms between each pair of chassis high speed
GMLAN serial data circuits at the
device connector that was just disconnected.
If any pair of serial data circuits is greater than 130 ohms
Repair the open/high resistance in the serial data circuits between the
disconnected device and the circuit splice in the serial data circuits.
- If each pair of serial data circuits is 130 ohms or less
- Replace the device that was disconnected.
Repair Instructions
Perform the Diagnostic Repair Verification after completing the repair.
- GMLAN and Media Oriented Systems Transport (MOST) Wiring Repairs
- Control Module References for device replacement, programming and setup
READ NEXT:
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
Diagnostic Instructions
Perform the Diagnostic System Check - Vehicle prior to using this
diagnostic procedure.
Review Strategy Based Diagnosis for an overview of the diagnostic
approach.
Diag
SEE MORE:
CRUISE CONTROL DESCRIPTION AND OPERATION
Cruise Control System Block Diagram
Fig. 4: Identifying Cruise Control System Block Diagram
Cruise control is a speed control system that maintains a desired vehicle
speed under normal driving conditions
at speeds above 40 km/h (25 mph). Steep grades may
Special Tools
DT-45201 Cooler Line Seal Remover
DT-49101 Seal Installer
For equivalent regional tools, refer to Special Tools .
Removal Procedure
Remove the battery tray. Refer to Battery Tray Replacement .
Remove the manual shaft and position switch assembly. Refer to Manual
Shift Detent L